
ABSTRACT

Counts of carloads of train shipments are effec-
tively described with loglinear models. This paper
presents models of counts by origin, destination,
and commodity type. Such models can highlight
structures in the data and give useful predictions. In
particular, there are definite interactions between
origin and destination and between origin and
commodity, and these models can capture these
relationships. Model selection depends on the
choice of goodness-of-fit statistic; this paper
addresses several issues relating to this choice.

INTRODUCTION

Roughly 1.7 billion tons of cargo is moved by train
every year within the United States. In this paper,
we explore a statistical method for modeling data
from train waybills. In particular, we focus on the
counts of carloads of cargo by commodity type and
by origin and destination. This information can be
arranged into a large three-dimensional table and is
thus suitable for analysis via loglinear models. In
addition to describing the data, such models allow
us to compare flows of freight between different
areas, search the data for unusual flows, and make
predictions of future flows. Choosing a good model
requires the selection of a goodness-of-fit statistic,
and we discuss issues involved in this process. We
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also note several challenges that this data set pres-
ents, including a lack of symmetry and a large
number of zero counts.

DATA

The data we analyze are from the Carload Waybill
Sample issued by the Interstate Commerce
Commission for the years 1988 through 1992 (ICC
1992). The data are a stratified sample from all
waybills for railroads with over 4,500 cars per year
of traffic or 5 percent or more of a state’s traffic.
There are over 1.9 million total records, each of
which has 62 fields of information. Here we focus
on three fields: the origin of the shipment, the des-
tination, and the type of commodity. Both the ori-
gin and destination are classified into 1 of 181
regions (for the continental United States) as
defined by the Bureau of Economic Analysis (BEA)
although some are missing or unknown. The com-
modities are classified by Standard Transportation
Commodity Codes (STCC), as per the Association
of American Railroads. Using the two-digit aggre-
gate codes gives us 37 categories of commodities in
this data set (for example, farm products, coal,
printed matter, etc.). Each record in the file is a
sample shipment, which may consist of multiple
carloads of freight. The sample is stratified, and
strata were sampled with different frequencies.
Thus, to get an estimate of the total count of car-
loads of commodity with a particular origin and
destination, we first multiply the number of car-
loads in a record by the inverse sampling frequency
and then sum these products over all such com-
modity shipments from the same origin to the same
destination. For example, a record of 7 carloads in
a stratum that was sampled with frequency 1 in 40
would get a weighted product of 280 carloads.
These sums are entered into a large three-dimen-
sional table, which is then ready for analysis.

As an example of the heterogeneity in the data,
we spotlight Chicago, Illinois, and Huntington,
West Virginia. Chicago is both the origin of the
most traffic, as well as the most frequent destina-
tion. Over eight million carloads originate from the
Chicago region, and these shipments are spread
over many different categories of commodities and
are well distributed across the country. In contrast,
Huntington is in the top 5 regions by origin of total

freight (over 3.5 million carloads), but this freight
is nearly all coal. It goes to a smaller number of des-
tinations, and much less freight is sent to
Huntington in return. In modeling this data set, we
need a model flexible enough to work for both gen-
eral-freight cities like Chicago and for commodity-
specific cities such as Huntington.

Unlike many tables, there is no symmetry in the
data since commodities (such as coal) are generally
shipped along particular routes, with cities either
being origins or destinations but not both. Another
potential problem is the large number of zero
counts. For example, few things besides coal origi-
nate from the Huntington area. However, we do
note that these zeroes are not structural zeroes.
While many of the zeroes are easily predictable,
there is no inherent reason any entry is zero. For
example, much freight now moves via intermodal
transport, meaning that it could go by truck part-
way and then be transferred to a train at an inter-
mediate location. Thus, the intermediate location
would show as the origin with respect to the train
shipment even though it is not the true origin of the
commodity.

LOGLINEAR MODELS

Data consisting of counts, such as the waybills, are
naturally modeled by the Poisson distribution,
which takes values on the nonnegative integers.
Instead of a standard regression model with an
assumption of Gaussian error, we use a Poisson
regression model. Such models are often called log-
linear because they are a linear model for the mean
after logarithms are taken. Here we model the
mean of the distribution of counts from origin i to
destination j of commodity k by mijk. The full log-
linear model in this context is 

where ai is a main effect for origin i (and bj and ck
are analogous), dij is an interaction effect for when
origin i and destination j have cargo flows not pro-
portional to the product of the main effects ai and
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bj (e and f are analogous), and gijk is a three-way
interaction between origin i, destination j, and
commodity k. The actual counts nijk of commodity
k from i to j thus follow a Poisson distribution with
mean mijk:

In practice, not all interaction terms may be nec-
essary, and some may be dropped from the model.
Also note that the model in (1) is overspecified
(there are more free parameters than degrees of
freedom), so some sort of restriction is needed. For
example, b1 = c1 = di1 = d1j = ei1 = e1k = fj1 = f1k =
gi11 = g1j1 = g11k = 1 for all i, j, k. While loglinear
models with only a few interaction terms can be fit
directly, most complex models require iterative
solutions, the most popular method being iterative
proportional fitting (Deming and Stephan 1940).
For more background on loglinear models, the
reader is referred to one of the many good refer-
ences on the topic (Agresti 1990; McCullagh and
Nelder 1989; Bishop et al. 1975).

Loglinear models are part of the same family of
models as gravity models (such as Sen and Smith
1995). Gravity models also contain a term relating
the distance between the origin and destination to
the rate of flow and so would have a term depend-
ing on this distance in equation (1). We have found
that train cargo flow is not related to distance, and
thus the additional term in the gravity model is
unhelpful for our data. In contrast to focusing on
modeling the effect of distance, we focus on the
complex interaction effects of the covariates.

In this paper, we take the Bayesian approach.
The gamma distribution serves as a conjugate prior
for all parameters, and the posterior can be easily
estimated via Markov chain Monte Carlo. With the
full posterior, one can easily get estimates of uncer-
tainty, in addition to simple point estimate. Either
an informative prior or a noninformative
(improper) prior can be used. Using a noninforma-
tive prior leads to posterior mode estimates equal
to the maximum likelihood estimates. We use an
essentially noninformative prior. More details on
Bayesian loglinear models can be found in Gelman

et al. (1995), and West (1994) discusses Bayesian
loglinear models in the context of gravity models.

ASSESSING GOODNESS-OF-FIT

To compare how well different models fit, we
employed cross-validation (see Stone 1974). For
this data set, annual counts seemed a natural unit of
validation. Thus for each year s =1,…,5, we fit each
model under consideration using the other 4 years
of data and used the fitted model to predict the
counts for year s. These fitted counts were then used
to compute a goodness-of-fit statistic qr,s for model
r for year s. To get the overall cross-validation score,
the goodness-of-fit statistics are summed across all
years giving The rest of this section
discusses choices of goodness-of-fit statistics.

Mean square error is an appropriate goodness-
of-fit statistic when the variance of observations is
the same for all observations (not true for Poisson
data) or when one is not interested in adjusting for
differing variances, such as when one is most inter-
ested in predicting the largest table entries correctly,
that is, when nominal error is more important than
relative error. This may be the case for train data in
that predicting 100 carloads when the truth was
200 (a nominal error of 100, relative error of
100%) is much less of a concern than predicting
100,000 carloads when the truth is 150,000 (nom-
inal error of 50,000, relative error of 50%). Those
50,000 extra carloads could represent a much
larger logistical problem than the 100 extra car-
loads, in which case mean square error would be a
useful summary. Equivalent to mean square error is
its square root, root mean square error (RMSE),
which has the advantage of being on the scale of the
data and thus being more interpretable.

Alternatively, one may be more interested in rel-
ative error. Statistical theory says that one should
adjust for the variance in computing goodness-of-
fit. The Pearson chi-squared statistic is 

where nijk is the actual count and is the pre-
dicted count. When the model holds, X2 is asymp-
totically distributed as a chi-squared distribution
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(see for example, Agresti 1990). The denominator
in (3) is the estimated variance of the prediction,
and thus X2 is a measure of relative error.
However, for an application such as cargo, it does
not make much sense to inflate the error when the
prediction is smaller than one. For example, if the
model predicts 0.1 carloads in a year, and in truth
2 carloads were observed, the contribution to X2

would be (2 – .1)2/.1 = 36.1, larger than the nomi-
nal error. When routes have hundreds of thousands
of cases, a nominal error of 2 carloads is rather
insignificant, and its contribution to the total error
does not seem like it should be inflated. As a further
complication, when this goodness-of-fit statistic is
used for predictions, the model might predict a
count of zero when the actual count could be
nonzero. In that case, X2 is infinite, and it is impos-
sible to compare models. If a small number were
added to each cell of the table, the comparison of
models can depend on the size of the value added.
To avoid these problems, we modify X2 so that the
denominator is no smaller than one: 

The Cressie-Read power-divergence family of
goodness-of-fit statistics (Read and Cressie 1988),
indexed by a single power parameter , is a gen-
eral family that includes many common measures
as special cases, including the Pearson chi-square
and the loglikelihood ratio statistic. Most of the
members of this family have the common problem
of being undefined for prediction either when some
entries predicted to be zero are nonzero or
when there are zero entries that were predicted to
be nonzero One standard goodness-of-
fit measure is in the intermediate power range and
thus is directly applicable to prediction with zero
entries: the Freeman-Tukey statistic, given here as
parameterized in Fienberg (1979): 

F2, employing the variance-stabilizing transforma-
tion for a Poisson distribution, represents a com-
promise between the mean square error and the

Pearson chi-square statistic. Note that while all
members of the Cressie-Read family have the same
asymptotic chi-square distribution, their distribu-
tions may be different for finite samples. In partic-
ular, when the data table is sparse (with many
zeroes, as with the waybill data), there can be prob-
lems with the chi-square approximation for all of
the statistics (for example, Koehler 1986).  

DATA ANALYSIS

The models under serious consideration were the
full model (equation 1), the model without a three-
way interaction (g of equation 1) but including all
two-way interactions, and the three models with no
three-way interaction and only two two-way inter-
actions (that is, no g and only two of d, e, and f in
equation 1). Models with fewer terms were unable
to capture the complexity of the data. Table 1 com-
pares goodness-of-fit statistics for all models with
at least two two-way interaction terms. We note
that we can not use the unmodified X2 statistic
because during cross-validation, some entries pre-
dicted to be zero are instead nonzero, leading to
infinite values of X2. 

From the table, we see that the choice of best
model does depend on the choice of measure of
goodness-of-fit. The full model seems best for
reducing absolute error since it has the lowest
RMSE (and does fairly consistently for each year of
the cross-validation). If relative error is more
important, the model using only two-way interac-
tions for origin versus destination and for origin
versus commodity performs best. Also of note is the
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TABLE 1 Cross Validation Goodness-of-Fit Statistics
for the Top Models 

Model RMSE F2

Full model 2029.2 6.59e+7 3.71e+9 

All 2-way interactions 2118.2 9.28e+7 3.34e+9

No origin-destination
interaction 4052.0 2.61e+8 3.81e+9

No origin-commodity 
interaction 4418.4 3.04e+8 4.03e+9

No destination-commodity 
interaction 2606.5 1.51e+8 2.86e+9

Note: RMSE is the root mean squared error of prediction, F2 is the
Freeman-Tukey statistic, and is the modified Pearson statistic.



model with all two-way interactions. It is a reason-
able compromise model having an RMSE close to
that of the full model yet also having the second
lowest F2 and X2. Thus, this model might be cho-
sen for its robust performance with respect to mul-
tiple goodness-of-fit statistics.

Substantively, it is interesting that the other mod-
els with only two two-way interactions do not per-
form as well. It seems clear that any reasonable
model must include both an interaction term for
origin versus destination and a term for origin ver-
sus commodity. An instructive example is that of
Huntington. As mentioned earlier, Huntington pri-
marily exports coal and only to a specific set of des-
tinations. Yet Huntington is one of the largest areas
in terms of total number of carloads. Thus, any
model must be able to account for both the fact that
Huntington exports a very large amount of coal but
little else as well as the fact that it exports large
amounts to a relatively small number of destina-
tions, unlike general shipping hubs like Chicago. In
contrast, there are no obvious examples of cities
that are destinations for large amounts of particular
commodities out of balance with their imports of
other commodities, so the removal of the interac-
tion term for destination versus commodity has
much less impact on the fit of the model. 

CONCLUSIONS

The train waybills data set is interesting both for its
information on commodity flows as well as for its
statistical challenges. Loglinear models provide an
effective method for describing the relationship
between cargo volume and origin, destination, and
commodity type. The size of the data set1 is much
larger than in a standard statistical problem. While
this size is beyond the capabilities of many standard
statistical software packages, loglinear models can
be programed directly. 

Model selection raised a number of statistical
issues. In contrast to many data sets used with log-
linear regression, the waybills are sorted by year,
providing a natural breakdown for cross validation.
The choice of goodness-of-fit measures has been dis-
cussed. Dealing with the large number of zero counts

during cross-validation appears to be a topic not
fully addressed in the statistical literature. The analy-
ses of this paper should be seen as a starting point for
further work, both methodological and relating to
the interpretations of the indicated models. 
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1Approximately 2 million records in the data file, result-
ing in over 119 million carloads distributed in a three-
way table containing over 1.2 million cells.


